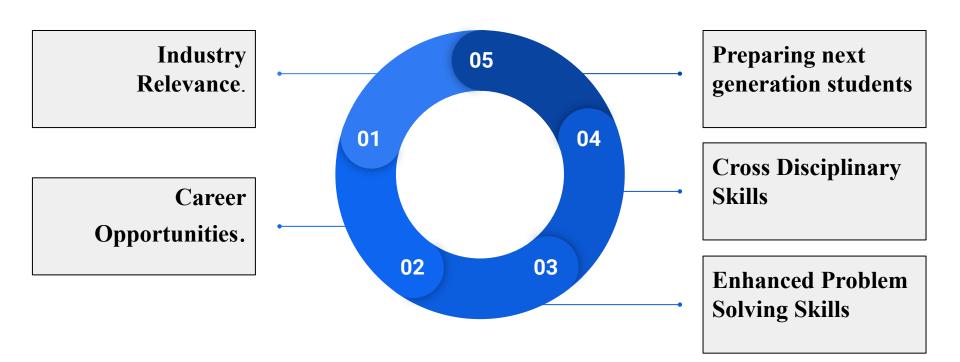


A Gentle Introduction to DevOps

Learning Objectives

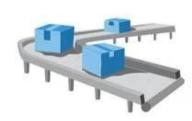

The learning objectives are to

- To explain DevOps through 5 P's framework
- To briefly review DevOps adoption in industry
- To briefly review DevOps Educational activities
- To explore DevOps research opportunities

Why you should know DevOps?

DevOps 101: Software Development and Operations

Is DevOps a Component of Industry 4.0 in the Software Industry?


END OF THE 18TH CENTURY

START OF THE 20TH CENTURY

START OF THE 1970S

PRESENT

INDUSTRY 1.0 Mechanization

Introduced mechanization of production by using water and steam to increase production capacity and productivity, versus manual craft work

1784 First mechanical loom

INDUSTRY 2.0 Electrification

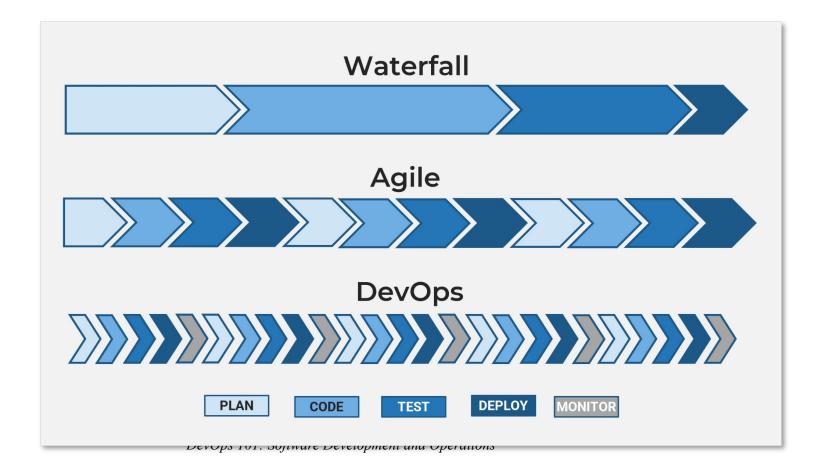
Introduced labor-based mass production (assembly lines) powered by electrical energy

1870 First production line, Cincinnati slaughterhouses

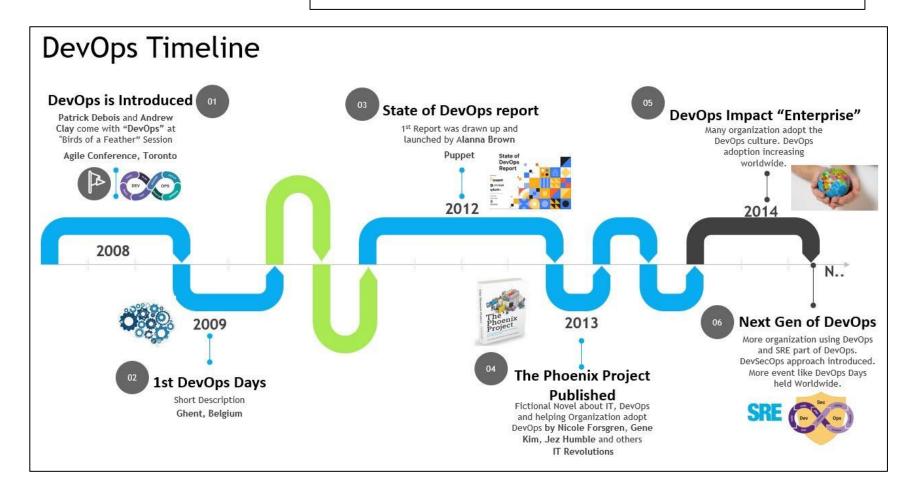
INDUSTRY 3.0 Automatization

Introduced electronics and computers to replace manual work by stand-alone robotic systems

1969 First programmable logic controller (PLC), Modicon 084


INDUSTRY 4.0 Cyber-Physical Systems

The convergence of physical, digital, and virtual environments through Cyber-Physical Systems (CPS) and the Internet of Things (IoT)


	Industry 4.0	DevOps
Scope and Focus	Holistic industrial transformation	Software development and delivery
Industries	Manufacturing, logistics, healthcare, etc.	Primarily software industry, but adaptable
Technologies	IoT, AI, big data, automation, robotics	CI/CD, automation, version control, etc.
Goals	Operational efficiency, waste reduction, predictive maintenance	Faster, reliable software releases
Cross-Functional Collaboration	Collaborative teams in industrial settings	Collaboration between dev and ops teams
Applicability	Impacts various business operations	Focused on software development and deployment

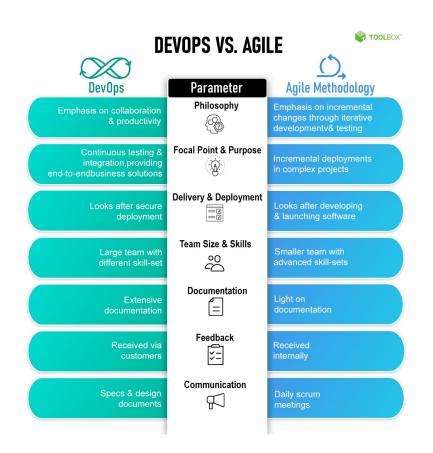
DevOps Timeline

DevOps is?	DevOps is not
Concept	Open-source software
Mindset	A programming language
A culture that must be nurtured and iteratively improved	Easily achieved nor implemented
An excellent way to confidently develop and deliver software	A cloud infrastructure solution
A collaborative approach	A product or toolchain
A continuous activity	A marketing campaign

Defining DevOps

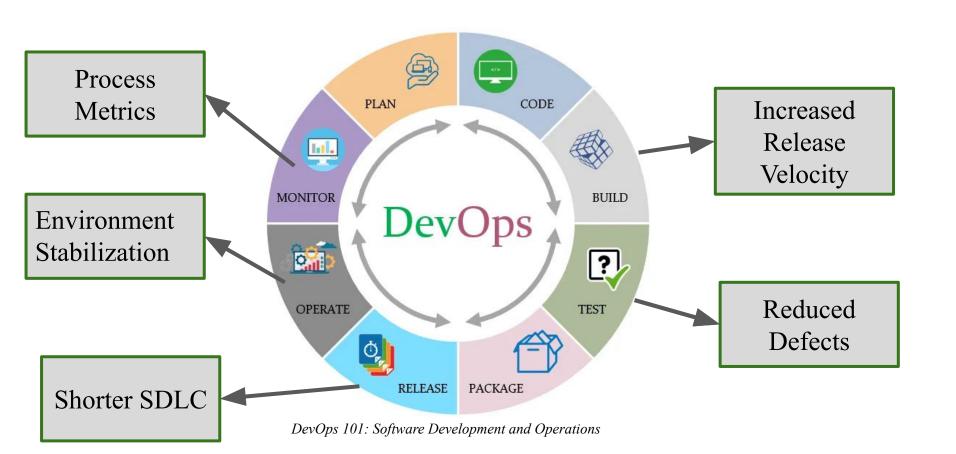
It is a set of practices combining software development (Dev) and IT operations (Ops). It aims to shorten the systems development life cycle and provide continuous delivery with high software quality.

Automates and integrates the processes of software development and IT teams so they can build, test, and release software faster and more reliably.


DevOps is a set of cultural norms and technical practices that enable organizations to deliver better software more quickly

Defining DevOps

A set of processes that continuously delivers software reducing release time and improving the quality of the software iteratively.



DevOps 101: Software Development and Operations

Defining DevOps

Process Perspective

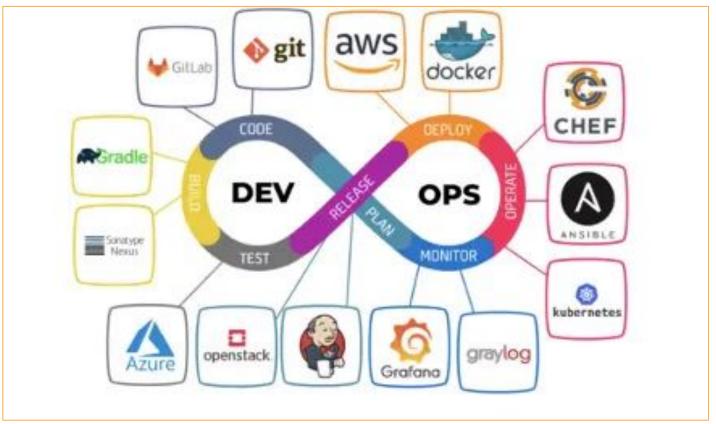
Version Control	Automated Testing	Infrastructure as Code	CI/CD Pipeline	Containeri- zation
 Track Changes Collaborati on Improve Code Quality 	 Improve Software Quality Speed up developm ent 	 Automatio n Fault Tolerance Scalability 	 Automatio n Collaborat ion Speed up developm ent 	Containerizatio n is a method of packaging, distributing, and managing software applications

Principle Perspective

Automation: Streamlining repetitive tasks.

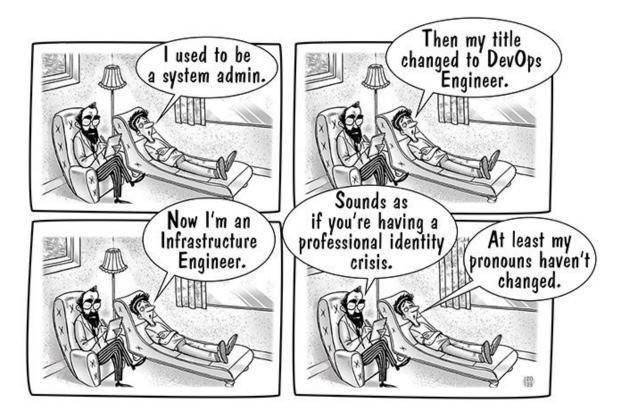
Collaboration:
Breaking down silos
and fostering
teamwork.

Monitoring and Feedback:


Continuous
Deployment (CD)

Continuous
Integration (CI):
Frequent code
integration and
testing

DevOps 101: Software Development and Operations


Product Perspective

DevOps 101: Software Development and Operations

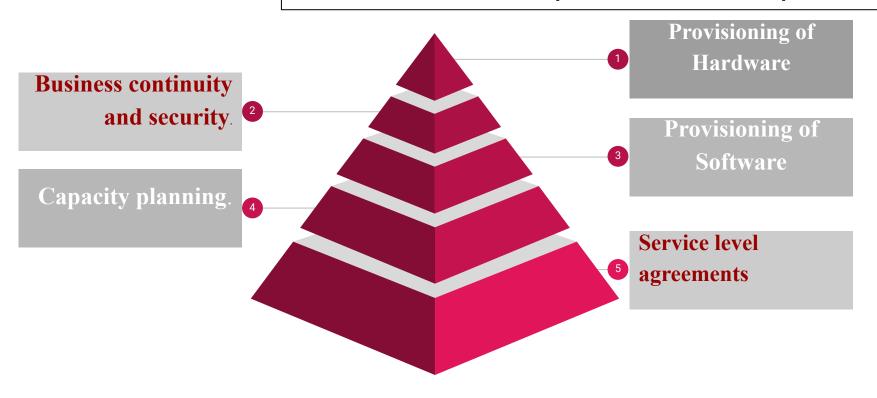
DevOps Personas

DevOps 101: Software Development and Operations

DevOps Personas

DevOps Engineer	Responsible for designing, implementing, and managing the infrastructure, tools, and automation.		
Release Manager	Release managers oversee the planning and coordination of software releases.		
Site Reliability engineer	SREs focus on ensuring the reliability, performance, and availability of systems and applications		
CI/CD Engineer	They ensure that code changes are automatically built, tested, and deployed, enabling a faster release cycle		
Containiration Specialist	Containerization specialists focus on the use of container technologies such as Docker and Kubernetes.		

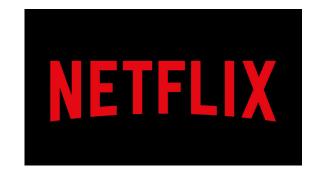
DevOps 101: Software Development and Operations



DevOps Practices

Requirements	Development	Build	Test	Deployment & Operations
Treat operational personnel as	Form small teams	Support continuous integration.	Perform Automated Testing	Support continuous deployment
first class stakeholders.	Use Unit testing Frameworks.	Adopt automated build tools	Perform user acceptance testing	Continuously monitor and respond to error condition

Operational Perspective


DevOps 101: Software Development and Operations

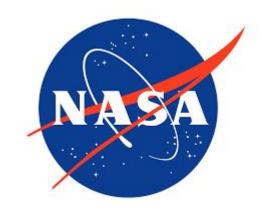
DevOps Adoption in Industries and their impact

Netflix by implementing DevOps practices, Netflix achieved continuous deployment, enabling them to release new features and updates to millions of users seamlessly.

They use tools like Spinnaker for automated deployments and Chaos Monkey for resilience testing.

DevOps Adoption in Industries and their impact

Facebook leverages DevOps for its fast-paced development and deployment.


They've built a robust automation framework that allows developers to continuously release code changes to a global audience while ensuring stability and security.

DevOps Adoption in Industries and their impact

NASA uses DevOps practices to manage its Mars Rover software. By implementing continuous integration and delivery, they reduced the time required to deploy and update software on the rover, ensuring mission success.

DevOps Adoption in Industries

Uber relies on DevOps practices to manage its extensive microservices architecture.

By automating deployment and monitoring, they ensure seamless and reliable ridesharing services on a global scale

Implementation challenges faced by industries

One of the most significant challenges in DevOps is **cultural transformation.** DevOps requires collaboration, communication, and a shared responsibility between development and operations teams. Overcoming cultural resistance, silos, and traditional ways of working can be challenging.

The DevOps landscape includes a wide array of tools for automation, continuous integration, containerization, orchestration, and monitoring. Selecting the right tools and integrating them effectively can be a complex task, especially for organizations new to DevOps

Implementation challenges faced by industries

Many organizations have *legacy* systems and processes that are not conducive to DevOps practices. Adapting these systems to work within a DevOps framework can be time-consuming and challenging. lack Legacy systems may automation, which is a core component of DevOps.

Effective monitoring and visibility into the entire DevOps pipeline are essential for identifying issues and ensuring continuous improvement. Setting up monitoring tools, creating meaningful metrics, and proactively addressing performance and reliability concerns can be a challenge.

Research Opportunities

- Security in DevOps
- Human Factors in DevOps
- Serverless and Microservices
- Machine Learning and AI in DevOps
- Performance Optimization
- Serverless and Edge Computing
- Container and Orchestration Security

Which of the following are THREE significant processes in DevOps

- 1. Version Control
- 2. Requirement Analysis
- 3. Automated Testing
- 4. Planning
- 5. Virtualization and Containerization

Which of the following drives the requirement analysis when DevOps is opted to manage software release cycle.THREE significant processes in DevOps

- 1. Separate functional requirements from non-functional.
- 2. Treat operational person as first class stakeholders
- 3. Quantify quality attributes
- 4. Identify test cases before use cases.

Which of the following is operational persona is responsible for overseeing reliability, availability and performance of a deployed application.

- 1. System Administrator
- 2. IT Manager
- 3. Chief Information Officer
- 4. Site Reliability Engineer

DevOps ecosystem is dominated by large number tools that automate release process

- 1. True
- 2. False

Developing robust automation tools to shorten the release process is on the of the best practice for organizations embracing DevOps culture.

- 1. True
- 2. False

