
DevOps 101: Software Development and Operations

Code Review

DevOps 101: Software Development and Operations

Learning Objectives

The learning objectives are to

● To define code quality
● To understand Python coding guidelines
● To understand benefits of code review
● To define Static code analysis

DevOps 101: Software Development and Operations

Does this code have good quality?

#main.py
def f(a):
 return a + 5

Pros:
● It is pretty

straightforward
● easy to read
● complexity is low

Cons:
● no documentation
● no tests
● inadequate name

DevOps 101: Software Development and Operations

Quantifying Code Quality

● How many defects do we have in the code base?
● Do we comply with the coding style?
● How much code is covered by the tests?
● How fast the code is?
● How much of the code do we really use?
● How much of the code base are code lines and how much space documentation

occupies?
● How complex is the code? Can a new developer in the team can dive into the

project easily?
● How many and how often the tests fail? Does it change overtime?

DevOps 101: Software Development and Operations

main.py
def add_5(a):
 """
 Add 5 to the provided number

 Parameters

 a : int

 Returns

 int
 Number incremented by 5
 """
 return a + 5

Improved
Quality

12 lines are
added

DevOps 101: Software Development and Operations

Guidelines about Indentations

DevOps 101: Software Development and Operations

Arguments on first line forbidden when not

using vertical alignment.

foo = long_function_name(var_one, var_two,
 var_three, var_four)

Aligned with opening delimiter.
foo = long_function_name(var_one, var_two,
 var_three, var_four)

DevOps 101: Software Development and Operations

my_list = [
 1, 2, 3,
 4, 5, 6,
]

result = some_function_that_takes_arguments(
 'a', 'b', 'c',
 'd', 'e', 'f'
)
)

DevOps 101: Software Development and Operations

my_list = [
 1, 2, 3,
 4, 5, 6,
]

)

result = some_function_that_takes_arguments(
 'a', 'b', 'c',
 'd', 'e', 'f',
)

DevOps 101: Software Development and Operations

Wrong:

operators sit far away from their operands

income = (gross_wages +
 taxable_interest +
 (dividends - qualified_dividends) -
 ira_deduction -
 student_loan_interest)

Correct:
easy to match operators with operands
income = (gross_wages
 + taxable_interest
 + (dividends - qualified_dividends)
 - ira_deduction
 - student_loan_interest)

DevOps 101: Software Development and Operations

Line Spacing

• Guidelines for Line spacing
– Two blank lines around top level functions
– Two blank lines around classes
– One blank line between functions in a class
– One blank line between logical groups in a function

(sparingly)
– Extra blank lines between groups of groups of

related functions (why are they in the same file?)

DevOps 101: Software Development and Operations

import sys,os

import os

import sys

● Imports should usually be on separate lines
● Imports should be grouped in the following order:

○ Standard library imports.
○ Related third party imports.
○ Local application specific imports.

● Wildcard imports (from <module> import *)
should be avoided,

from myclass import MyClass
from foo.bar.yourclass import YourClass

DevOps 101: Software Development and Operations

Whitespace Guidelines

– No trailing spaces at end of a line
– Do not pad ([{ with spaces,
– Do not pad before : ; , ,

DevOps 101: Software Development and Operations

Whitespace Guidelines
Always surround =, +=, -=, == , < , > , != ,
<> , <= , >= , in , not in , is , is not, and, or,
not with a single space

DevOps 101: Software Development and Operations

Never surround = with a space as a function
parameter argument

Whitespace Guidelines

DevOps 101: Software Development and Operations

● How you name functions, classes, and variables can have a huge impact
on readability

● Avoid the following variable names:
■ Lower case L (l)
■ Uppercase O (O)
■ Uppercase I (I)

● Class names should be in CapWords Also known as CamelCase
● Functions (e.g. generate_otp())

○ Lowercase, with words separated by underscores as necessary to
improve readability

○ Function Names are usually verbs
● To indicate a variable is a constant, use all CAPS, (e.g..

SENDER_MAIL_ID)

Naming Conventions

DevOps 101: Software Development and Operations

Bad Example

DevOps 101: Software Development and Operations

Documentations

Code need to be documented for two things
– Code readers:What the code is doing and why

Code comments
– Users: How to use your code

README.md

DevOps 101: Software Development and Operations

Code Comments

Here are some key points to remember when adding comments to your code:

● Limit the line length of comments and docstrings to 72 characters.
● Use complete sentences, starting with a capital letter.
● Make sure to update comments if you change your code.
● Code comments are of three types: block comments, inline comments

and

DevOps 101: Software Development and Operations

Code Comments

Here are some key points to remember when adding comments to your
code:

● Limit the line length of comments and docstrings to 72 characters.
● Use complete sentences, starting with a capital letter.
● Make sure to update comments if you change your code.

DevOps 101: Software Development and Operations

Block Comments

● Indent block comments to the same level as the code they describe.
● Start each line with a # followed by a single space.
● Separate paragraphs by a line containing a single #.

DevOps 101: Software Development and Operations

Inline Comments

● Use inline comments sparingly.
● Write inline comments on the same line as the statement they refer to.
● Separate inline comments by two or more spaces from the statement.
● Start inline comments with a # and a single space, like block comments.
● Don’t use them to explain the obvious.

DevOps 101: Software Development and Operations

Docstrings

● Surround docstrings with three double quotes on either side, as in """This
is a docstring""".

● Write them for all public modules, functions, classes, and methods.
● Put the """ that ends a multi line docstring on a line by itself:

DevOps 101: Software Development and Operations

Code Reviews
 Part II

DevOps 101: Software Development and Operations

Why do programmers do code reviews

Finding
Defects .

 Code
Improvement.

Share Code
Ownership

Alternative
Solutions

Knowledge
Transfer

05

01

02 03

04

DevOps 101: Software Development and Operations

Code Review Best practices

Set Clear
Objectives

1. Finding
Defects

2. Improving
Code
Readability

3. Knowledge
Sharing

Use
Checklist

Create and use
code review
checklists that
outline common
issues to look
for.

Review in
small chunks

Break down
code changes
into smaller,
manageable
piece

Ensure
Standards

Check code
adheres to
coding
standards and
guidelines
established for
the project

Understand
the Context

Understanding
the problem the
code is solving,
the design
decisions, and
the impact on
the overall
system.

DevOps 101: Software Development and Operations

Practice Problem

DevOps 101: Software Development and Operations

Practice Problem

 Function Docstring:
● Issue: The docstring mentions what the function does, but it doesn't specify the

input parameters or the expected return value.
● Recommendation: Improve the docstring to include information about the

function's parameters and the return value.
 Conditional Statement:

● Issue: The if-else statement is not necessary; the else branch is redundant.
● Recommendation: Simplify the code by removing the unnecessary else branch.

 Loop:
● Issue: The loop can be simplified by using the arithmetic sum formula.
● Recommendation: Replace the loop with a direct calculation using the formula:

(m - n + 1) * (n + m) / 2.

DevOps 101: Software Development and Operations

Practice Problem

DevOps 101: Software Development and Operations

Code Reviews
 Checklist

DevOps 101: Software Development and Operations

General Code Quality

Is the code readable and well-documented? Are variable
and function names clear and meaningful?

✔ X

Does the code follow the project's coding standards and
style guidelines?

✔ X

Are there any code smells or anti-patterns in the code? ✔ X

Are there any unnecessary or commented-out code
sections?

✔ X

Are there any magic numbers or hard-coded values that
should be replaced with constants or configuration
settings?

✔ X

DevOps 101: Software Development and Operations

Functionality and Logic

Does the code solve the intended problem or implement the
required feature?

✔ X

Are edge cases and error conditions handled properly? ✔ X

Are there any missing validations or input checks? ✔ X

Does the code handle exceptions and errors gracefully, with
meaningful error messages?

✔ X

Are there any redundant or duplicated code blocks that can
be refactored?

✔ X

DevOps 101: Software Development and Operations

Testing and Documentation

Are there unit tests, and do they cover different code paths
and scenarios?

✔ X

Are test cases included for the code changes? ✔ X

Do the tests pass, and do they fail when expected? ✔ X

Is the code adequately documented, including comments,
function descriptions, and API documentation?

✔ X

Are there updates in the project's documentation, README
files, or changelogs to reflect the code changes?

✔ X

DevOps 101: Software Development and Operations

Static Code Analysis

What is SCA A method of reviewing and analyzing source code,
bytecode, or binary code without executing it.

Why To identify potential issues, vulnerabilities, and
defects in software before it is run or deployed.

How Through specialized tools or software that scan
the code for a wide range of problems

DevOps 101: Software Development and Operations

Key Aspects of SCA

Automated
Process

Static code
analysis is an
automated process
that examines the
code for issues by
parsing and
analyzing it

Detection of
Issues

coding standards
violations,
potential security
vulnerabilities
code smells,
memory leaks,
and logic

Consistency

enforce coding
standards and
best practices,
promoting
code
consistency

Customization

Tools often allow
for customization
of analysis rules
and settings to
match the specific
requirements and
coding standards
of a project

Integration

integrate with
development
environments,
build systems,
and CI/CD
pipelines.

DevOps 101: Software Development and Operations

ESLint JavaScript,
TypeScript

Enforces coding standards and style
guidelines.

Pylint Python Analyzes Python code for style and
conventions.

Checkmarx Java, C/C++,
Python

Focuses on identifying security
vulnerabilities and compliance issues.

SonarQube Multiple
languages (e.g.,
Java, Python,
C++)

Detects code smells, bugs,
vulnerabilities, and provides a holistic
view of code quality and maintainability.

Comparison of various SCA tools

DevOps 101: Software Development and Operations

Improve Python code with Pylint

DevOps 101: Software Development and Operations

Quiz time

1. Which of the following THREE parameters are typically used to measure
Code quality
a. Number of defects in the program
b. Algorithmic complexity of a function
c. Compliance to industry guidelines
d. Code coverage of the test cases
e. Time taken to execute the program

DevOps 101: Software Development and Operations

Quiz time

1. Which of the following is NOT one of the best practices for code review

a. Use camel case for declaring class names
b. Set clear objectives
c. Use check list
d. Review in small chunks

DevOps 101: Software Development and Operations

Quiz time

1. Which of the following is static code analyzer checking Python
program for the compliance of coding guidelines
a. PyCharm
b. PySCA
c. Pylint
d. PyCheck

DevOps 101: Software Development and Operations

Quiz time

1. What is the problem with following code segment

Arguments on first line forbidden when not using vertical alignment.
foo = long_function_name (var_one, var_two,
 var_three, var_four)

Arguments on first line forbidden when not

using vertical alignment.

foo = long_function_name(var_one, var_two,
 var_three, var_four)

