
DevOps 101: Software Development and Operations

Software Testing

DevOps 101: Software Development and Operations

Learning Objectives

The learning objectives are to

● To perform Software Testing with with PyTest and
UnitTest

● To learn how to write efficient testing code in Python

DevOps 101: Software Development and Operations

Testing : A Simple approach with print statement

DevOps 101: Software Development and Operations
Hw1.py

def add(x,y):
 return x+y
def substract(x, y):
 return x-y
def multiply(x, y):
 return x+y
def divide(x,y):
 return x/y
def max(x,y,z): m = x
 if(y>m):
 m=y
 if(z>m):
 m=z
 return

print ("addition", add(4,3))
print ("substraction", substract(4,3))
print ("mulitplication", multiply(4,3))
print ("division", divide(4,3))
print ("maximum", max(4,3,1))

DevOps 101: Software Development and Operations

● Computational logic and test code is intermixed.

● Test code and computational logic are difficult to
maintain.

● We need a more cleaner approach to write test
code.

Limitations

DevOps 101: Software Development and Operations

Testing : Through Testing Framework

DevOps 101: Software Development and Operations

import unittest
class TestCalculator(unittest.TestCase):

def test_add(self):
 '''Test case function for addition'''
 result = add(4, 7)
 expected = 11
 self.assertEqual(result, expected)

def test_substract(self):
 '''Test case function for subtraction'''
 result = subtract(7,4)
 expected = 3
 self.assertEqual(result, expected)

DevOps 101: Software Development and Operations

import unittest
class TestCalculator(unittest.TestCase):

def test_multiply(self):
 '''Test case function for multiplication'''
 result = multiply(4, 7)
 expected = 28
 self.assertEqual(result, expected)

def test_divide(self):
 '''Test case function for division'''
 result = subtract(10,2)
 expected = 5
 self.assertEqual(result, expected)

DevOps 101: Software Development and Operations

def test_max(self):
 '''Test case function for maximum'''
 result = max(10,7,2)
 expected = 10
 self.assertEqual(result, expected)
 result = max(7,10,2)
 expected = 10
 self.assertEqual(result, expected)

 result = max(2,7,10)
 expected = 10
 self.assertEqual(result, expected)

Focus on
Code
Coverage

DevOps 101: Software Development and Operations

OOP in Python: A Simple Example

DevOps 101: Software Development and Operations

class Student:

def __init__(self):

self._ca = 0

self._mse =0

self._ese =0

self._name =None

@property

def ca(self):

print("getter method called")

return self._ca

@ca.setter

def ca(self, m):

print("Setter method called")

if m < 0 or m > 20 :

raise ValueError("Marks are not within

range(0-20)")

else:

self._ca = m

Definition of
getter and setter

methods

DevOps 101: Software Development and Operations

class Student:

def __init__(self):

self._ca = 0

self._mse =0

self._ese =0

self._name =None

@property

def mse(self):

print("getter method called")

return self._mse

@mse.setter

def mse(self, m):

print("Setter method called")

if m < 0 or m > 20 :

raise ValueError("Marks are not within

range(0-20)")

else:

self._mse= m

Mid-sem
Exam methods

DevOps 101: Software Development and Operations

def total(self, a,b,c):

return self._ca +

self._mse + self._ese

@property

def ese(self):

print("getter method called")

return self._ese

@ese.setter

def ese(self, m):

print("Setter method called")

if m < 0 or m > 60 :

raise ValueError("Marks are not within

range(0-60)")

else:

self._ese= m

ESE exam and
Total method

DevOps 101: Software Development and Operations

OO Testing (inefficient way)

DevOps 101: Software Development and Operations

class TestStudent(unittest.TestCase):

def test_ca(self):

self.awk = Student()

self.awk.ca = 15

self.assertEqual(self.awk.ca, 15)

def test_mse(self):

self.awk = Student()

self.awk.mse = 15

self.assertEqual(self.awk.mse,

15)

def test_ese(self):

self.awk = Student()

self.awk.ese = 55

self.assertEqual(self.awk.ese,

55)

All test methods have its own data and
testing code

DevOps 101: Software Development and Operations

def test_total(self):

self.awk = Student()

self.awk.mse = 10

self.awk.ese = 40

self.awk.ca = 10

sum = self.awk.total(self.awk.ca,

self.awk.mse,self.awk.ese)

self.assertEqual(sum, 60)

All test methods have its own data and
testing code

DevOps 101: Software Development and Operations

OO Testing (Efficient way)

DevOps 101: Software Development and Operations

def setUp(self):

self.awk = Student()

self.awk.mse = 10

self.awk.ese = 40

self.awk.ca = 10

def test_ca(self):

self.assertEqual(self.awk.ca, 10)

def test_mse(self):

self.assertEqual(self.awk.mse,

10)

def test_ese(self):

self.assertEqual(self.awk.ese,

40)

def test_total(self):

sum = self.awk.total(self.awk.ca,

self.awk.mse,self.awk.ese)

All test methods have its own data and
testing code

DevOps 101: Software Development and Operations

def test_caValueError(self):

with self.assertRaises(ValueError):

self.sanil = Student()

self.sanil.ca =25

def test_mseValueError(self):

with self.assertRaises(ValueError):

self.sanil = Student()

self.sanil.mse =25

def test_eseValueError(self):

with self.assertRaises(ValueError):

self.sanil = Student()

self.sanil.mse =65

Testing Exception
code

DevOps 101: Software Development and Operations

Assert Methods

DevOps 101: Software Development and Operations

Assert Methods

import unittest
class TestCalculator(unittest.TestCase):

● unittest has been built into the
Python standard library since
version 2.1.

● unittest contains both a
testing framework and a test
runner. unittest

DevOps 101: Software Development and Operations

What is unittest

import unittest
class TestCalculator(unittest.TestCase):

● unittest has been built into the
Python standard library since
version 2.1.

● unittest contains both a
testing framework and a test
runner. unittest

DevOps 101: Software Development and Operations

How to write testcases?

● Import unittest from the standard library
● Create a class called TestXXX that inherits from

the TestCase class
● Define the test methods by adding self as the first

argument
● Use the self.assertEqual() method on the TestCase

class
● Change the command-line entry point to call

unittest.main()

https://realpython.com/absolute-vs-relative-python-imports/

DevOps 101: Software Development and Operations

How to execute testcases?

if __name__ == '__main__':

 unittest.main()

unittest.main(argv=[''], verbosity=2, exit=False)

DevOps 101: Software Development and Operations

How to structure testcases?

The structure of a test should loosely follow this
workflow:

1. Create your inputs
2. Execute the code being tested, capturing the

output
3. Compare the output with an expected result

DevOps 101: Software Development and Operations

Types of Software Testing

Unit testing tests the
working of
isolated/independent
units which may be
a single method or a
function.

User acceptance
testing is performed
by users to validate
the functionality of
the software.

Integration testing
tests the working of
independent
component (DB,
Web Server) in the
overall system

DevOps 101: Software Development and Operations

Measuring Test Coverage

● Test coverage is a metric in software testing
that measures the amount of testing
performed by a set of tests.

● It determines whether test cases are covering
the application code and how much code is
exercised when running those test cases.

● For example, if you have 10,000 lines of
code and only 5,000 lines of code are tested,
the coverage is 50%

DevOps 101: Software Development and Operations

What is Test fixture

● In Python, a test fixture is a
function or method that runs
before and after a block of test
code executes.

● Fixtures are used to set up and
tear down the test environment,
and to provide reusable data to
tests.

DevOps 101: Software Development and Operations

Best practices for Software Testing in Python

● Use Descriptive Test Names
● One Assertion per Test
● Test the Edge Cases
● Use Fixtures and Setup Methods
● Use Test Coverage Analysis
● Review and Maintain Test Code

DevOps 101: Software Development and Operations

Lab Activity

● Write test case to test the functions sendOTP,
validateEmailID and generateOTP functions.

DevOps 101: Software Development and Operations

Quiz time

Which of the following is the testing framework to write testcases in Python

A. PyTest
B. Unittest
C. Junit
D. A & B
E. A &B&C

DevOps 101: Software Development and Operations

Quiz time

The Assert statement

A. Compares expected and actual result
B. Print error messages
C. Executes test case
D. Is a non-executable statement

DevOps 101: Software Development and Operations

Quiz time

A function or method that runs before and after a block of test
code executes is called test fixture

A. True
B. False

DevOps 101: Software Development and Operations

Quiz time

The user validation is an important statement in

A. System test
B. Unit testing
C. Integration testing
D. User Acceptance testing

