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Learning Objectives

The learning objectives are  to 

● To perform Software Testing with  with PyTest and 
UnitTest 

● To learn how to write efficient testing code in Python
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Testing : A Simple approach with print statement
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Hw1.py

def add(x,y):
  return x+y
def substract(x, y):
    return x-y
def multiply(x, y):
    return x+y
def divide(x,y):
    return x/y
def max(x,y,z):  m = x
  if(y>m):
    m=y
  if(z>m):
    m=z
  return

print ("addition", add(4,3))
print ("substraction", substract(4,3))
print ("mulitplication", multiply(4,3))
print ("division", divide(4,3))
print ("maximum", max(4,3,1))
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● Computational logic and test code is intermixed.

● Test code and computational logic are difficult to 
maintain.

● We need a more cleaner approach to write test 
code.

Limitations 



DevOps 101: Software Development and Operations

Testing : Through Testing Framework
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import unittest
class TestCalculator(unittest.TestCase):

def test_add(self):
        '''Test case function for addition'''
        result = add(4, 7)
        expected = 11
        self.assertEqual(result, expected)

def test_substract(self):
        '''Test case function for subtraction'''
        result = subtract( 7,4)
        expected = 3
        self.assertEqual(result, expected)
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import unittest
class TestCalculator(unittest.TestCase):

def test_multiply(self):
        '''Test case function for multiplication'''
        result = multiply(4, 7)
        expected = 28
        self.assertEqual(result, expected)

def test_divide(self):
        '''Test case function for division'''
        result = subtract(10,2)
        expected = 5
        self.assertEqual(result, expected)
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def test_max(self):
        '''Test case function for maximum'''
        result = max(10,7,2)
        expected = 10
        self.assertEqual(result, expected)
         result = max(7,10,2)
        expected = 10
        self.assertEqual(result, expected)

         result = max(2,7,10)
        expected = 10
        self.assertEqual(result, expected)

Focus on 
Code 
Coverage
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OOP in Python: A Simple Example
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class Student:

def __init__(self):

self._ca = 0

self._mse =0

self._ese =0

self._name =None

@property

def ca(self):

print("getter method called")

return self._ca

@ca.setter

def ca(self, m):

print("Setter method called")

if m < 0 or m > 20 :

raise ValueError("Marks are not within 

range(0-20)")

else:

self._ca = m

Definition of 
getter and setter 

methods
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class Student:

def __init__(self):

self._ca = 0

self._mse =0

self._ese =0

self._name =None

@property

def mse(self):

print("getter method called")

return self._mse

@mse.setter

def mse(self, m):

print("Setter method called")

if m < 0 or m > 20 :

raise ValueError("Marks are not within 

range(0-20)")

else:

self._mse= m

Mid-sem 
Exam methods



DevOps 101: Software Development and Operations

def total(self, a,b,c):

return self._ca + 

self._mse + self._ese

@property

def ese(self):

print("getter method called")

return self._ese

@ese.setter

def ese(self, m):

print("Setter method called")

if m < 0 or m > 60 :

raise ValueError("Marks are not within 

range(0-60)")

else:

self._ese= m

ESE exam and 
Total method
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OO Testing (inefficient way)
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class TestStudent(unittest.TestCase):

def test_ca(self):

self.awk = Student()

self.awk.ca = 15

self.assertEqual(self.awk.ca, 15)

def test_mse(self):

self.awk = Student()

self.awk.mse = 15

self.assertEqual(self.awk.mse, 

15)

def test_ese(self):

self.awk = Student()

self.awk.ese = 55

self.assertEqual(self.awk.ese, 

55)

All test methods have its own data and 
testing code
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def test_total(self):

self.awk = Student()

self.awk.mse = 10

self.awk.ese = 40

self.awk.ca = 10

sum = self.awk.total(self.awk.ca, 

self.awk.mse,self.awk.ese )

self.assertEqual(sum, 60)

All test methods have its own data and 
testing code
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OO Testing (Efficient way)
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def setUp(self):

self.awk = Student()

self.awk.mse = 10

self.awk.ese = 40

self.awk.ca = 10

def test_ca(self):

self.assertEqual(self.awk.ca, 10)

def test_mse(self):

self.assertEqual(self.awk.mse, 

10)

def test_ese(self):

self.assertEqual(self.awk.ese, 

40)

def test_total(self):

sum = self.awk.total(self.awk.ca, 

self.awk.mse,self.awk.ese )

 

All test methods have its own data and 
testing code
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def test_caValueError(self):

with self.assertRaises(ValueError):

self.sanil = Student()

self.sanil.ca =25

def test_mseValueError(self):

with self.assertRaises(ValueError):

self.sanil = Student()

self.sanil.mse =25

def test_eseValueError(self):

with self.assertRaises(ValueError):

self.sanil = Student()

self.sanil.mse =65

Testing Exception 
code
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Assert Methods
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Assert Methods

import unittest
class TestCalculator(unittest.TestCase):

● unittest has been built into the 
Python standard library since 
version 2.1. 

● unittest contains both a 
testing framework and a test 
runner. unittest
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What is unittest

import unittest
class TestCalculator(unittest.TestCase):

● unittest has been built into the 
Python standard library since 
version 2.1. 

● unittest contains both a 
testing framework and a test 
runner. unittest
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How to write testcases?

● Import unittest from the standard library
● Create a class called TestXXX that inherits from 

the TestCase class
● Define the test  methods by adding self as the first 

argument
● Use the self.assertEqual() method on the TestCase 

class
● Change the command-line entry point to call 

unittest.main()

https://realpython.com/absolute-vs-relative-python-imports/
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How to  execute testcases?

if __name__ == '__main__':

    unittest.main()

unittest.main(argv=[''], verbosity=2, exit=False)
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How to  structure testcases?

The structure of a test should loosely follow this 
workflow:

1. Create your inputs
2. Execute the code being tested, capturing the 

output
3. Compare the output with an expected result
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Types of Software Testing

Unit testing tests the 
working of 
isolated/independent 
units which may be 
a single method or a 
function.

User acceptance 
testing is performed 
by  users to validate 
the functionality of 
the software.

Integration testing 
tests the working of 
independent 
component (DB, 
Web Server) in the 
overall system
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Measuring Test Coverage

● Test coverage is a metric in software testing 
that measures the amount of testing 
performed by a set of tests.

● It determines whether test cases are covering 
the application code and how much code is 
exercised when running those test cases.

● For example, if you have 10,000 lines of 
code and only 5,000 lines of code are tested, 
the coverage is 50%
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What is  Test fixture

● In Python, a test fixture is a 
function or method that runs 
before and after a block of test 
code executes. 

● Fixtures are used to set up and 
tear down the test environment, 
and to provide reusable data to 
tests.
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Best practices for  Software Testing in Python

● Use Descriptive Test Names
● One Assertion per Test
● Test the Edge Cases
● Use Fixtures and Setup Methods
● Use Test Coverage Analysis
● Review and Maintain Test Code



DevOps 101: Software Development and Operations

Lab Activity

● Write test case to test the functions sendOTP, 
validateEmailID and generateOTP functions.
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Quiz time

Which of the following is the testing framework to write testcases in Python

A. PyTest
B. Unittest
C.  Junit
D. A & B 
E. A &B&C
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Quiz time

The Assert  statement 

A. Compares expected and actual result 
B. Print error messages
C.  Executes test case
D. Is a  non-executable statement
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Quiz time

A function or method that runs before and after a block of test 
code executes is called test fixture

A. True
B. False
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Quiz time

The user validation is an important statement in

A. System test
B. Unit testing
C.  Integration testing
D. User Acceptance testing


