
DevOps 101: Software Development and Operations

Containerization

DevOps 101: Software Development and Operations

Learning Objectives

The learning objectives are to

● Understand the concept of containerization and its
significance in DevOps.

● Differentiate containers from traditional virtualization.
● Understand Docker's architecture, including images and

containers.
● Demonstrate how to install Docker and run a basic container.
● To explain the feature and need of Container orchestration

platform

DevOps 101: Software Development and Operations

Definition

● A lightweight form of virtualization that allows you to
package and run applications and their dependencies in
isolated, self-sufficient environments called containers.

● Containers provide a consistent and efficient way to
package, distribute, and execute software across different
computing environments, such as development, testing,
and production systems.

● They encapsulate an application, its code, libraries, and
runtime components, ensuring that it runs reliably and
consistently across various platforms.

DevOps 101: Software Development and Operations

Container vs Virtual Machine

DevOps 101: Software Development and Operations

Containerization Virtualization

Level of
Abstraction

Containers operate at the
application layer. They
encapsulate an application and
its dependencies, running as
isolated processes on a shared
operating system kernel.
Containers share the host OS
resources, making them
lightweight and efficient.

Traditional virtualization uses
a hypervisor to emulate an
entire operating system,
including its kernel. Each
virtual machine (VM) runs a
complete OS instance. This
approach is heavier in terms of
resource usage compared to
containers.

Container vs Virtual Machine

DevOps 101: Software Development and Operations

Containerization Virtualization

Isolation Containers provide
process-level isolation,
meaning that they are isolated
from each other at the
application and process level.
However, they share the same
kernel, which can be a
potential security concern if
not properly configured.

VMs provide strong isolation
because each VM runs its
own full-fledged operating
system. They are isolated at
both the application and
kernel levels, offering higher
security but at the cost of
increased resource usage.

DevOps 101: Software Development and Operations

Containerization Virtualization

Resource
Overhead

Containers have minimal
resource overhead because
they share the host OS's
kernel. This makes them
highly efficient in terms of
memory and CPU usage.
Multiple containers can run on
a single host with minimal
resource wastage..

VMs have more significant
resource overhead due to the
emulation of complete OS
instances. Each VM includes
its kernel, which consumes
more memory and CPU
resources.

Container vs Virtual Machine

DevOps 101: Software Development and Operations

Containerization Virtualization

Portability Containers are highly portable
because they encapsulate
applications and their
dependencies. Container
images can run consistently
across different environments,
making them ideal for
microservices architectures
and DevOps practices.

VMs are less portable due to
their larger size and the need
for compatibility with
specific hypervisors. Moving
VMs between different
virtualization platforms can
be challenging.

Container vs Virtual Machine

DevOps 101: Software Development and Operations

Containerization Virtualization

Boottime Containers start and stop
quickly, often in a matter of
seconds, making them
suitable for dynamic
workloads and rapid scaling.

VMs have longer boot times
since they need to load an
entire OS. Starting a VM can
take minutes, which is less
suitable for fast-scaling
applications.

Container vs Virtual Machine

DevOps 101: Software Development and Operations

Containerization Virtualization

Management &
Orchestration

Containers are typically
managed and orchestrated
using container
orchestration platforms like
Kubernetes, Docker Swarm,
and container runtimes like
Docker. These tools provide
automation for deploying,
scaling, and managing
containers.

VMs are typically managed
using virtualization
management tools, and their
orchestration often involves
solutions like VMware
vSphere or Microsoft
Hyper-V.

Container vs Virtual Machine

DevOps 101: Software Development and Operations

Significance of containerization to DevOps

Application
Isolation.

Scalability.

Resource Efficiency

Security and
Isolation

Version Control

05

01

02 03

04

DevOps 101: Software Development and Operations

Docker Architecture

DevOps 101: Software Development and Operations

Docker Architecture

Docker
Daemon

It is a long-running background process that manages Docker
containers on a host machine. It is responsible for building, running,
and maintaining containers.

Docker
Client:

User interface either CLI/GUI

Docker
Images:

Docker images are read-only templates that define an application, its
code, libraries, and runtime environment.

Docker
Containers

Containers are instances created from Docker images. They are
isolated, runnable environments that encapsulate applications and
their dependencies.

DevOps 101: Software Development and Operations

Docker Architecture

Docker
Registry

Docker registries are centralized repositories for storing and
distributing Docker images. The most well-known registry is Docker
Hub, but you can also set up private registries.

Docker
Networking

Docker provides networking capabilities that allow containers to
communicate with each other and the external world. Containers can
be connected to user-defined networks for isolation and flexibility.

Docker
Volumes

Docker volumes are mechanisms for persisting data generated and
used by containers. They are separate from the container's filesystem
and can be mounted within containers.

DevOps 101: Software Development and Operations

Dockerize a Python Application

Install Docker Desktop on your machine1

Develop Python Application2

DevOps 101: Software Development and Operations

Create a Dockerfile3

DevOps 101: Software Development and Operations

Dockerize a Python Application

Build the Docker Image4

Run the Docker Container and Access Your
Application5-6

DevOps 101: Software Development and Operations

Kubernetes:
A Container Orchestration Platform

DevOps 101: Software Development and Operations

Why do we need Kubernetes?

DevOps 101: Software Development and Operations

Why do we need Kubernetes?

● Container Technology allows use to design a large monolithic
application into smaller microservices which can be accessed through
its public API

● Containers are basically small computational units.

● We need a OS like control unit to manage containers and interactions
among them.

● Kubernetes is one such control unit/ container orchestration platform.

DevOps 101: Software Development and Operations

Why do we need Kubernetes?

● Container technology allows use to decompose a large monolithic
application into smaller microservices which can be accessed through
its public API

● Containers are basically small computational units.

● We need a OS like control unit to manage containers and interactions
among them.

● Kubernetes is one such platform controlling container deployment,
scaling, and interactions among them.

DevOps 101: Software Development and Operations

What is Kubernetes?

● Kubernetes is a open source software tool to manage container
workload

● It operates at container level (not hardware) and controls deployment,
scaling and management of containers.

● It works along with docker.

●

DevOps 101: Software Development and Operations

Differences between Docker and Kubernetes

Docker Kubernetes

Docker is a platform that
enables developers to
package, distribute, and
run applications as
lightweight containers. Definition

Kubernetes is an
open-source container
orchestration platform
that automates the
deployment, scaling, and
management of
containerized
applications.

DevOps 101: Software Development and Operations

Differences between Docker and Kubernetes

Docker Kubernetes

Docker follows a
client-server
architecture. The Docker
daemon runs as a
background process
(server), and the Docker
client communicates
with it via a REST API.

Architecture

Kubernetes follows a
master-node architecture.
The master node
manages the cluster, and
worker nodes (minions)
execute containers.

DevOps 101: Software Development and Operations

Differences between Docker and Kubernetes

Docker Kubernetes

Ideal for local
development, testing,
and packaging
applications into
containers.

Use Case

Suited for managing
containerized
applications at scale in
production
environments.

DevOps 101: Software Development and Operations

Differences between Docker and Kubernetes

Docker Kubernetes

Docker manages
resources at the
container level, allowing
you to specify resource
constraints (CPU,
memory) for individual
containers.

Resource
Management

Kubernetes manages
resources at the pod level
(a group of containers),
enabling the
coordination of resources
between containers
within a pod.

DevOps 101: Software Development and Operations

Differences between Docker and Kubernetes

Docker Kubernetes

Networking between
containers is
straightforward,
especially within the
same Docker host.

Networking

 Kubernetes has a more
sophisticated networking
model, allowing for
communication between
containers across nodes.

DevOps 101: Software Development and Operations

Differences between Docker and Kubernetes

Docker Kubernetes

Scaling is typically done
manually or through
tools like Docker Swarm
for orchestration

Orchestration and
Scaling

Kubernetes provides
advanced orchestration
features like automated
scaling, load balancing,
rolling updates, and
self-healing.

DevOps 101: Software Development and Operations

Main Architectural Elements in Kubernetes

DevOps 101: Software Development and Operations

Main Architectural Elements in Kubernetes

Element Definition Use Case

Pods A Pod is the smallest unit in the Kubernetes
object model.

It represents a single instance of a running
process in a cluster.

Pods can contain one or more containers
sharing the same network namespace,
storage, and have a unique IP address.

Pods are used to deploy
and manage individual
units of an application
or microservices
architecture.

DevOps 101: Software Development and Operations

Main Architectural Elements in Kubernetes

Element Definition Use Case

Services A Service is an abstraction that defines a
logical set of Pods.

Services provide stable endpoints for
applications to communicate with,
abstracting away the underlying Pod
instances.

Services enable load balancing and service
discovery.

Services are used to
enable communication
between different parts
of an application or
between different
applications within a
Kubernetes cluster.

DevOps 101: Software Development and Operations

Main Architectural Elements in Kubernetes

Element Definition Use Case

Deployments A Deployment is a higher-level
abstraction that enables declarative
updates to applications.

They handle updates, rollbacks, and
scaling automatically, providing a
declarative way to manage application
deployments.

Deployments are
commonly used to
manage the
deployment and scaling
of applications. They
abstract away the
complexity of directly
managing Pods.

DevOps 101: Software Development and Operations

Components in Kubernetes Cluster

DevOps 101: Software Development and Operations

Main Architectural Elements in Kubernetes

Element Definition

Master Node
● The master node is responsible for managing the

overall state of the cluster. It acts as the control
plane, making decisions about the cluster
(scheduling, scaling, etc.) and responding to
events from nodes.

● Key components on the master node include the
Kubernetes API server, controller manager,
scheduler, and etcd.

DevOps 101: Software Development and Operations

Main Architectural Elements in Kubernetes

Element Definition

Worker Node
● Worker nodes, or minions, are the machines

where containers are actually deployed and run.
Each worker node has a container runtime (such
as Docker) for managing containers.

● The main component on a worker node is the
kubelet, which communicates with the master
node and manages containers on the node.

DevOps 101: Software Development and Operations

Main Architectural Elements in Kubernetes

Element Definition

etcd
● etcd is a distributed key-value store that is used

to store the configuration data of the cluster. It
serves as the cluster's source of truth for
information about the state of the cluster.

DevOps 101: Software Development and Operations

Quiz time

Containers encapsulate
1. Code
2. Runtime Components
3. Libraries needed to execute code
4. All of the above

DevOps 101: Software Development and Operations

Quiz time

Which of the following statement TRUE about virtualization and
containerization

1. Containers provides process level isolation and virtualization provide os -level
isolation

2. Containers provides OS- level isolation and virtualization provide process level
isolation

3. Both provide process-level isolation
4. Both provide OS-level isolation

DevOps 101: Software Development and Operations

Quiz time

Docker images are read-only templates that define an application, its code,
libraries, and runtime environment.

1. TRUE
2. FALS

DevOps 101: Software Development and Operations

Quiz time

Following docker command

1. Creates docker image file
2. Tests the python code before creating image files
3. Loads image file
4. Runs image file

DevOps 101: Software Development and Operations

Quiz time

Following docker command

1. Creates docker image file
2. Tests the python code before creating image files
3. Loads image file
4. Runs image file

DevOps 101: Software Development and Operations

Quiz time

A containerized application in Kubernetes consists of

1. Pods, Services, Deployments
2. Code, Test cases, deployments
3. Worker node, master node, cluster node
4. Client, server, databases

