Dr. Babasaheb Ambedkar Technological University Department of Computer Engineering Bachelor of Technology (Computer Engineering), Semester III Subject: Quantum Computing

Assignment (CA2)

5th October 2024

- 1. What is a qubit in quantum computing?
 - A. A classical bit used in quantum computers
 - B. The quantum equivalent of a classical bit, representing 0, 1, or a superposition of both
 - C. A unit of quantum energy
 - D. A physical particle used to store quantum information
- 2. Which of the following best describes superposition in quantum computing?
 - A. A state where a qubit is in either 0 or 1, but not both
 - B. A qubit being in a definite state until measured
 - C. A qubit being in multiple states (0 and 1) simultaneously
 - D. A mechanism that resets the quantum state
- 3. What does the process of "quantum entanglement" allow qubits to do?
 - A. Retain data over time
 - B. Operate independently of each other
 - C. Share a state, meaning the state of one qubit directly affects the other, no matter the distance
 - D. Avoid quantum decoherence
- 4. Which mathematical concept is essential for understanding quantum computing?
 - A. Boolean algebra
 - B. Linear algebra
 - C. Differential calculus
 - D. Trigonometry
- 5. What is the main advantage of quantum computers over classical computers?
 - A. They operate without power.
 - B. They can solve problems like factoring large numbers exponentially faster
 - C. They store more data than classical computers.
 - D. They do not require any physical hardware.
- 6. In a quantum circuit, what is a gate?
 - A. A physical barrier in a quantum chip
 - B. A mathematical function applied to qubits to perform computations
 - C. The measure of a qubit's fidelity

- D. The output state of a quantum computer
- 7. What is a common physical implementation of a qubit?
 - A. Electrical resistor
 - B. Photons, ions, or superconducting circuits
 - C. Silicon transistors
 - D. Optical mirrors
- 8. What is a relative phase shift in the context of quantum mechanics?
 - A. A shift that changes the relative amplitudes of $|0\rangle$ and $|1\rangle$ states, affecting interference patterns
 - B. A uniform shift applied to all components of a quantum state
 - C. A change in the absolute value of the wavefunction
 - D. A process that eliminates superposition
- 9. What is the braket notation for a qubit in superposition with equal probability of being $|0\rangle$ or $|1\rangle$? A. $|\psi\rangle = |0\rangle$
 - B. $\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$ C. $\frac{1}{2}(|0\rangle + |1\rangle)$ D. $|0\rangle + |1\rangle$
- 10. What does $\langle \phi | \psi \rangle$ represent in the braket notation
 - A. The probability of measuring a qubit in the $|\psi\rangle$ state
 - B. The inner product of states $|\phi\rangle$ and $|\psi\rangle$
 - C. The sum of states $|\phi\rangle$ and $|\psi\rangle$
 - D. The difference between states $|\phi\rangle$ and $|\psi\rangle$
- 11. A qubit is represented as $|\psi\rangle = \frac{1}{\sqrt{2}}(|0\rangle + i|1\rangle)$ What is the relative phase difference between $|0\rangle$ and $|1\rangle$ A. 0
 - B. $\frac{\pi}{2}$ radians
 - C. $\bar{\pi}$ radians
 - D. 2π radians
- 12. In quantum mechanics, what does a phase gate (e.g., the S or T gate) do to a qubit?
 - A. It measures the qubit in the computational basis.
 - B. It changes the phase of one state relative to another.
 - C. It swaps the $|0\rangle$ and $|1\rangle$ states.
 - D. It creates entanglement between qubits
- 13. If a qubit is in the state $|\psi\rangle = \frac{1}{2}(|0\rangle \sqrt{3}|1\rangle)$ what is the probability of measuring it in the $|1\rangle$ state A. $\frac{1}{4}$ B. $\frac{3}{4}$ C. $\frac{1}{2}$. D. 1

14. Which of the following states is orthogonal to $|\phi\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$

 $\begin{array}{l} \mathrm{A.} \ |\psi\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) \\ \mathrm{B.} \ |\phi\rangle = \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle) \end{array}$

C. $|\phi\rangle = |0\rangle$ D. $|\phi\rangle = |1\rangle$

- 15. What is the global phase of the state $|\psi\rangle=e^{\pi/4}(|0\rangle+|1\rangle)$
 - A. 0
 - B. $\pi/4$
 - C. It can not be observed directly
 - D. π
- 16. Which of the following operations is commonly used to create a relative phase shift in quantum circuits? A. The Hadamard gate

Pauli-X gate

- B. The T gate ($\pi/8$ gate)
- C. The CNOT gate