Dr. Babasaheb Ambedkar Technological University Department of Computer Engineering Bachelor of Technology (Computer Engineering), Semester III Subject: Quantum Computing

Assignment (Lecture 1

5th October 2024

- 1. What is the main difference between classical bits and quantum bits?
 - A. Classical bits can only be in two states, while quantum bits can be in three states.
 - B. Classical bits assume states of 0 or 1, while quantum bits can be in a superimposed state.
 - C. Quantum bits use real numbers, while classical bits use binary.
 - D. Classical bits use the Bloch sphere for representation
- 2. In a superimposed state, what quantum states satisfy that
 - A. $\alpha + \beta = 0$ B. $\alpha^2 + \beta^{=1}$ C. $|\alpha|^2 + |\beta|^2 = 1$ D. $\alpha^2 = \beta$
- 3. What does the Bloch Sphere represent in quantum computing?
 - A. The energy states of quantum systems.
 - B. The possible states of a quantum bit.
 - C. The physical implementation of a qubit.
 - D. The interaction between qubits
- 4. Which of the following is an example of a pure quantum state?
 - A. $|0\rangle$.
 - B. $|1\rangle$.
 - C. $\alpha |0\rangle + |1\rangle$.
 - D. Both A and B
- 5. Which of the following points corresponds to the state $|i\rangle$ on the Bloch Sphere (Y-axis)?
 - A. (1,0,0)
 - B. (0, 1, 0).
 - C. (0,0,1).
 - D. (0,-1,0)

Short Answer Questions

Define a superimposed state in quantum computing and give an example.

Explain how the Bloch Sphere visualizes a quantum bit.

If a qubit is in the state $\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$ what is its corresponding point on the X-axis of the Bloch Sphere? Compare the difference between pure and superimposed states using real-world examples.

What is the significance of the condition $|\alpha|^2+|\beta|^2$ =1